If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2=50
We move all terms to the left:
14x^2-(50)=0
a = 14; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·14·(-50)
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{7}}{2*14}=\frac{0-20\sqrt{7}}{28} =-\frac{20\sqrt{7}}{28} =-\frac{5\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{7}}{2*14}=\frac{0+20\sqrt{7}}{28} =\frac{20\sqrt{7}}{28} =\frac{5\sqrt{7}}{7} $
| -4s+4=-6s | | -7-14h+8h=-3h+5 | | 0.5(12x-6)=0.25(16x+12 | | -3r=16=-3(5+r)-1 | | x+x+1+x+4=294 | | -2=-5+3h | | 12.06+12.6z=5.9z | | 4j+5=9 | | 9=g-3+7 | | 17r+4=16r-11 | | 8x=3/8 | | x=150000-0.05 | | (6x-4)=(10x) | | -18p-20+7p=20-6p | | 7x=5/7 | | 11x/2-14=19 | | 17x+34=67 | | (6x)-4=(10x) | | 63=-9g | | 1/4x=123 | | 93=-5(2v+3)-8v | | -2x+5=2x+17 | | x+1/3=18 | | 11=3/4k | | 4x+6=-12+7x | | 20q-18q=10 | | 7u+16=9u | | 9x17=62 | | 3/4k=11 | | 76+204+104+10x-4=360 | | 22x=198x | | 22x=198x= |